
Chapter 13 

Gravitation 



13.2 Newton’s Law of Gravitation 

Here m1 and m2 are the masses of the 

particles, r is the distance between them, 

and G is the gravitational constant.  

 

G = 6.67 x1011 Nm2/kg2 

    = 6.67 x1011 m3/kg s2 

Fig. 13-2 (a) The gravitational force on particle 1 due to particle 2 is an attractive force because particle 1 

is attracted to particle 2. (b) Force is directed along a radial coordinate axis r extending from particle 1 

through particle 2. (c) is in the direction of a unit vector    along the r axis. 

r̂



Clicker question 

Suppose the distance between two objects is cut in half. The 

gravitational force between them is …  

A. doubled. 

B. halved. 

C. quadrupled. 

D. quartered. 



13.2 Newton’s Law of Gravitation 

A uniform spherical shell of matter attracts a 

particle that is outside the shell as if all the 

shell’s mass were concentrated at its center. 

The gravitational field: 

 

• Rather than describing gravitation in terms 

of ―action at a distance‖ as Newton did, it is 

convenient to think about gravity in terms of 

a gravitational field (as Einstein did) that 

results from the presence of mass and that 

exists at all points in space. 

 

– A massive object creates a gravitational 

field in its vicinity, and other objects 

respond to the field at their immediate 

locations. 

– The gravitational field can be visualized 

with a set of vectors giving its strength 

(in N/kg; equivalently, m/s2) and its 

direction. 

Near Earth’s surface: 

On a larger scale: 



12.3 Gravitation and the Principle of Superposition 

• For n interacting particles, the principle of superposition for the 

gravitational forces on particle 1 can be written as: 

 

 

 

• Here F1,net is the net force on particle 1 due to the other particles 

and, for example, F13 is the force on particle 1 from particle 3, etc. 

Therefore,  

• The gravitational force on a particle from a real (extended) object 

can be expressed as: 

 

 

 

• Here the integral is taken over the entire extended object . 



Example: Net Gravitational Force 

Calculations: 

Figure 13-4a shows an arrangement of three 

particles, particle 1 of mass m1 = 6.0 kg and 

particles 2 and 3 of mass m2 = m3 = 4.0 kg, and 

distance a = 2.0 cm. What is the net gravitational 

force 1, net on particle 1 due to the other particles? 

Relative to the positive direction of the x axis, 

the direction of F1,net is:  



13.4: Gravitation Near Earth’s Surface 

• If the particle is released, it will fall toward the 

center of Earth, as a result of the gravitational 

force, with an acceleration designated as the 

gravitational acceleration ag. Newton’s 2nd law 

tells us that magnitudes F and ag are related by: 

 

 

 

 

• If the Earth is a uniform sphere of mass M, the 

magnitude of the gravitational force from Earth 

on a particle of mass m, located outside Earth a 

distance r from Earth’s center, is: 

 

• Therefore,  



13.4: Gravitation Near Earth’s Surface 

• Any g value measured at a given location will differ 

from the ag value given before for that location for 

three reasons:  

 

(1) Earth’s mass is not distributed uniformly; 

(2) Earth is not a perfect sphere;  

(3) Earth rotates.  

 

• For the same three reasons, the measured weight 

mg of a particle also  differs from the magnitude of 

the gravitational force on the particle. 



Example: Difference in Accelerations 



13.4: Gravitation Inside Earth 

A uniform shell of matter exerts no net 

gravitational force on a particle located 

inside it. 

 

Example: 
 

Three explorers attempt to travel by capsule 

through a tunnel directly from the south pole to 

the north pole. According to the story, as the 

capsule approaches Earth’s center, the  

gravitational force on the explorers becomes 

alarmingly large and then, exactly at the center, 

it suddenly but only momentarily disappears. 

Then the capsule travels through the second 

half of the tunnel, to the north pole. 

 

Check this story by finding the gravitational 

force on the capsule of mass m when it reaches 

a distance r from Earth’s center. Assume that 

Earth is a sphere of uniform density ρ (mass 

per unit volume). 

Calculations:  

 

 

 

 

 

 

 

 

 

 

 
The force magnitude depends linearly on the 

capsule’s distance r from Earth’s center. 

Thus, as r decreases, F also decreases, until it 

is zero at Earth’s center. 

 



13.6: Gravitational Potential Energy 

• The gravitational potential energy of the 

two-particle system is: 

 

 

 

 

• U(r) approaches zero as r approaches 

infinity and that for any finite value of r, 

the value of U(r) is negative. 

 

• If the system contains more than two 

particles, consider each pair of particles 

in turn, calculate the gravitational 

potential energy of that pair with the 

above relation, as if the other particles 

were not there, and then algebraically 

sum the results. That is: 



13.6: Gravitational Potential Energy 

• A baseball is shot directly away from Earth along the path in 

the figure. To find the gravitational potential energy U of the 

ball at point P along its path, at radial distance R from Earth’s 

center, determine the work done. 

• The work W done on the ball by the gravitational force as the 

ball travels from point P to a great (infinite) distance from Earth 

is:  

 

 

 

 

 

 

 

 

 

 

 

• where W is the work required to move the ball from point P (at 

distance R) to infinity.  

• Work can also be expressed in terms of potential energies as: 



13.6: Gravitational Potential Energy Path Independence 

• The work done along each circular arc is zero, 

because the direction of F is perpendicular to the 

arc at every point. Thus, W is the sum of only the 

works done by F along the three radial lengths. 

 

• The gravitational force is a conservative force. 

Thus, the work done by the gravitational force on 

a particle moving from an initial point i to a final 

point f is independent of the path taken between 

the points. The change ΔU in the gravitational 

potential energy from point i to point f is given by: 

 

 

 

 

• Since the work W done by a conservative force 

is independent of the actual path taken, the 

change ΔU in gravitational potential energy is 

also independent of the path taken. 



13.6: Gravitational Potential Energy: Potential Energy and Force 

The minus sign indicates that the force on mass m points 

radially inward, toward mass M. 



13.6: Gravitational Potential Energy: Escape Speed 

• If you fire a projectile upward, there is a certain minimum initial speed that will cause it 

to move upward forever, theoretically coming to rest only at infinity.  

 

• This minimum initial speed is called the (Earth) escape speed. 

 

• Consider a projectile of mass m, leaving the surface of a planet (mass M, radius R) 

with escape speed v. The projectile has a kinetic energy K given by ½ mv2, and a 

potential energy U given by: 

 

 

 

• When the projectile reaches infinity, it stops and thus has zero kinetic energy. It also 

has zero potential energy because an infinite separation between two bodies is our 

zero-potential-energy configuration. The total energy at infinity is therefore zero. From 

the principle of conservation of energy, its total energy at the planet’s surface must 

also have been zero, and so: 

 

 

 

 

• This gives the escape speed:  



13.6: Gravitational Potential Energy: Escape Speed 



Example: 



13.7: Planets and Satellites: Kepler’s 1st Law 

1. THE LAW OF ORBITS: 

 

All planets move in elliptical orbits, with the Sun at one focus. 



13.7: Planets and Satellites: Kepler’s 2nd Law 

2. THE LAW OF AREAS: 

 

A line that connects a planet to the 

Sun sweeps out equal areas in the 

plane of the planet’s orbit in equal 

time intervals; that is, the rate dA/dt 

at which it sweeps out area A is 

constant. 

Angular momentum, L: 

 



13.7: Planets and Satellites: Kepler’s 3rd Law 

3. THE LAW OF PERIODS:  

 

The square of the period of any planet is proportional to the cube of the 

semimajor axis of its orbit. 

• Consider a circular orbit with radius r (the 

radius of a circle is equivalent to the 

semimajor axis of an ellipse). Applying 

Newton’s 2nd law to the orbiting planet 

yields: 

 

 

 

• Using the relation of the angular velocity, ω, 

and the period, T, yields: 



Example: Halley’s Comet 



13.8: Satellites: Orbits and Energy 

• As a satellite orbits Earth in an elliptical path, the 

mechanical energy E of the satellite remains 

constant. Assume that the satellite’s mass is 

very much smaller than Earth’s mass. 

 

• The potential energy of the system is given by: 

 

 

 

 

• For a satellite in a circular orbit: 

 

 

 

• Thus, one gets:  

 

 

 

 

• For an elliptical orbit (semimajor axis a):  



• Newton explained orbits using universal 

gravitation and the laws of motion. 

• Bound orbits are generally elliptical. 

• In the special case of a circular orbit, the 
orbiting object ―falls‖ around a gravitating 
mass, always accelerating toward its center 
with the magnitude of its acceleration 
remaining constant. 

• Unbound orbits are hyperbolic or (borderline 
case) parabolic. 

13.8: Satellites: Orbits and Energy 

• The ―parabolic‖ trajectories of projectiles near 

Earth’s surface are actually sections of 

elliptical orbits that intersect Earth. 

• The trajectories are parabolic only in the 
approximation that we can neglect Earth’s 
curvature and the variation in gravity with 
distance from Earth’s center. 



• The total energy E — the sum of kinetic energy K 

and potential energy U — determines the type of 

orbit an object follows: 

• For E < 0, the object is in a bound, elliptical orbit. 

• Special cases include circular orbits and the 
straight-line paths of falling objects. 

• For E > 0 the orbit is unbound and hyperbolic. 

• The borderline case E = 0 gives a parabolic orbit. 

13.8: Satellites: Orbits and Energy 

• This negative energy shows that the orbit is 
bound. 

• The lower the orbit, the lower the total energy —
but the faster the orbital speed. 

• This means an orbiting spacecraft needs to 
lose energy to gain speed. 



Example: Mechanical Energy of a Bowling Ball 



13.9: Einstein and Gravitation 

The fundamental postulate of 

Einstein’s general theory of relativity 

about gravitation (the gravitating of 

objects toward each other) is called 

the principle of equivalence, which 

says that gravitation and acceleration 

are equivalent. 



13.9: Einstein and Gravitation: Curvature of Space 



13.9: Einstein and Gravitation: Curvature of Space 


